博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
第二十四周项目4-猴子选大王(约瑟夫问题)
阅读量:6973 次
发布时间:2019-06-27

本文共 4076 字,大约阅读时间需要 13 分钟。

一群猴子,编号是1,2,3 ...m,这群猴子(m个)按照1-m的顺序围坐一圈。从第1只开始数,每数到第n个,该猴子就要离开此圈,这样依次下来,直到圈中只剩下最后一只猴子,则该猴子为大王。输入m和n,输出为大王的猴子是几号。

提示1:(1)链表解法:可以用一个循环的单链表来表示这一群猴子。表示结点的结构体中有两个成员:一个保存猴子的编号,一个为指向下一个人的指针,编号为m的结点再指向编号为1的结点,以此构成环形的链。当数到第n个时,该结点被删除,继续数,直到只有一个结点。(2)使用结构数组来表示循环链:结构体中设一个成员表示对应的猴子是否已经被淘汰。从第一个人未被淘汰的数起,每数到n时,将结构中的标记改为0,表示这只猴子已被淘汰。当数到数组中第m个元素后,重新从第一个数起,这样循环计数直到有m-1被淘汰。

这是一个约瑟夫问题。

约瑟夫问题是个有名的问题:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉。例如N=6,M=5,被杀掉的顺序是:5,4,6,2,3,1。

分析:
(1)由于对于每个人只有死和活两种状态,因此可以用布朗型数组标记每个人的状态,可用true表示死,false表示活。
(2)开始时每个人都是活的,所以数组初值全部赋为false。
(3)模拟杀人过程,直到所有人都被杀死为止。
无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。
我们知道第一个人(编号一定是(m-1) mod n) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m mod n的人开始):
k k+1 k+2 ... n-2,n-1,0,1,2,... k-2
并且从k开始报0。
我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-2 --> n-2
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k) mod n
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:
令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]
递推公式
f[1]=0;
f=(f+m) mod i; (i>1)
有了这个公式,我们要做的就是从1-n顺序算出f的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
由于是逐级递推,不需要保存每个f。

#include 
using namespace std;const int m = 3;int main(){ int n, f = 0; cin >> n; for (int i = 1; i <= n; i++) f = (f + m) % i; cout << f + 1 << endl;}
这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执行效率。

笔算解决约瑟夫问题

在M比较小的时候 ,可以用笔算的方法求解,
M=2
即N个人围成一圈,1,2,1,2的报数,报到2就去死,直到只剩下一个人为止。
当N=2^k的时候,第一个报数的人就是最后一个死的,
对于任意的自然数N 都可以表示为N=2^k+t,其中t<n/2
于是当有t个人去死的时候,就只剩下2^k个人 ,这2^k个人中第一个报数的就是最后去死的。这2^k个人中第一个报数的人就是2t+1
于是就求出了当M=2时约瑟夫问题的解:
求出不大于N的最大的2的整数次幂,记为2^k,最后一个去死的人是2(N-2^k)+1
M=3
即N个人围成一圈,1,2,3,1,2,3的报数,报到3就去死,直到只剩下一个人为止。
此时要比M=2时要复杂的多
我们以N=2009为例计算
N=2009,M=3时最后被杀死的人记为F(2009,3),或者可以简单的记为F(2009)
假设这种情况下还剩下n个人,则下一轮将杀死[n/3]个人,[]表示取整,还剩下n-[n/3]个人
设这n个人为a1,a2,...,a(n-1),an
从a1开始报数,一圈之后,剩下的人为a1,a2,a4,a5,...a(n-n mod 3-1),a(n-n mod 3+1),..,an
于是可得:
1、这一轮中最后一个死的是a(n-n mod 3),下一轮第一个报数的是a(n-n mod 3+1)
2、若3|n,则最后死的人为新一轮的第F(n-[n/3])个人
若n mod 3≠0 且f(n-[n/3])<=n mod 3则最后死的人为新一轮的第n-[n/3]+F(n-[n/3])-(n mod 3)人
若n mod 3≠0 且f(n-[n/3])>n mod 3则最后死的人为新一轮的第F(n-[n/3])-(n mod 3)人
3、新一轮第k个人对应原来的第 3*[(k-1)/2]+(k-1)mod 2+1个人
综合1,2,3可得:
F(1)=1,F(2)=2,F(3)=2,F(4)=1,F(5)=4,F(6)=1,
当f(n-[n/3])<=n mod 3时 k=n-[n/3]+F(n-[n/3])-(n mod 3),F(n)=3*[(k-1)/2]+(k-1)mod 2+1
当f(n-[n/3])>n mod 3时 k=F(n-[n/3])-(n mod 3) ,F(n)=3*[(k-1)/2]+(k-1)mod 2+1
这种算法需要计算 [log(3/2)2009]次 这个数不大于22,可以用笔算了
于是:
第一圈,将杀死669个人,这一圈最后一个被杀死的人是2007,还剩下1340个人,
第二圈,杀死446人,还剩下894人
第三圈,杀死298人,还剩下596人
第四圈,杀死198人,还剩下398人
第五圈,杀死132人,还剩下266人
第六圈,杀死88人,还剩下178人
第七圈,杀死59人,还剩下119人
第八圈,杀死39人,还剩下80人
第九圈,杀死26人,还剩下54人
第十圈,杀死18人,还剩36人
十一圈,杀死12人,还剩24人
十二圈,杀死8人,还剩16人
十三圈,杀死5人,还剩11人
十四圈,杀死3人,还剩8人
十五圈,杀死2人,还剩6人
F(1)=1,F(2)=2,F(3)=2,F(4)=1,F(5)=4,F(6)=1,
然后逆推回去
F(8)=7 F(11)=7 F(16)=8 f(24)=11 f(36)=16 f(54)=23 f(80)=31 f(119)=43 f(178)=62 f(266)=89 f(398)=130
F(596)=191 F(894)=286 F(1340)=425 F(2009)=634

#include 
using namespace std;struct Monkey{ int num; //猴子的编号 struct Monkey *next; //下一只猴子};int main(){ int m,n,i,j,king; Monkey *head, *p1,*p2; cin>>m>>n; if(n==1) { king=m; } else { //建立猴子围成的圆圈 p1=p2=new Monkey; head = p1; head->num=1; for(i=1,p1->num=1; i
num=i+1; p2->next=p1; p2=p1; //p2总是上一只 } p2->next=head; //最后一只再指向第一只,成了一个圆圈 //下面要开始数了 p1=head; for(i=1; i
next; //围成圈的,可能再开始从第一只数,如果还未被淘汰的话 //找到了, p2=p1->next; //p2将被删除 //cout<<"第"<
<<"轮淘汰"<
num<
next=p2->next; //p2就这样被“架空了” p1=p2->next; //下一轮数数的新起点 delete p2; //将不在链表中的结点放弃掉 } king=p1->num; delete p1; } cout<
<
运行结果:

@ Mayuko

转载于:https://www.cnblogs.com/mayuko/p/4567543.html

你可能感兴趣的文章
easy_install 和 pip
查看>>
ssm中返回中文字符串时出现乱码?
查看>>
复习i++和++j
查看>>
【spring cloud】一个ms微服务想要给注册中心eureka发现,需要满足这些条件,微服务不能被eureka注册中心发现的解决方案...
查看>>
mac地址绑定
查看>>
[越狱工具]&nbsp;一键Root&nbsp;SuperOneClic…
查看>>
LINUX ubuntu JAVA 切换JDK版本
查看>>
杭电 1596 find the safest road
查看>>
Win32 API实现CDC类的FillSolidRect接口
查看>>
git学习总结
查看>>
Flex读取xml文件
查看>>
iPhone4最新降级教程(iOS5.1.1)
查看>>
sql language 根据语言来返回不同的结果
查看>>
构造方法
查看>>
堆排序的实现
查看>>
Linux inode空间占满 “no space left on device”
查看>>
【 Java 】 简易交通灯
查看>>
利用opengl进行球体的建模
查看>>
Hbase 的基础操作
查看>>
python中列表的简单用法
查看>>